Casas Cuevas Subterráneas

Bioconstruccion

Los pueblos subterráneo, casas construidas a tres metros bajo de tierra o en las montañas, gran ejemplo es China

Pueblos que no se ven si no se mira hacia el suelo. Infinidades de casas prolijamente alineadas en terrazas de piedra pardo amarillentas, ocre y mostaza. En la amplia meseta de Loes a unos 600 kilómetros al suroeste de Beijing, comunidades de campesinos chinos viven aún en cavernas cavadas por ellos mismo, en las laderas de barrancos o en cuevas subterraneas. Esta forma de vivienda fue utilizada durante miles de años por sus ancestros y aún hoy sirve de morada a millones de personas en la zona norte de China, donde está ubicada Beijing


bioconstruccion


El Yan´an, llamada " ciudad de cavernas" y ubicada también en la meseta de Loes, a pocos kilómetros del río Amarillo, Mao Tse Tuung habitó en esta clase de construcción y fue ésta ciudad la cuna de la revolución de MAO , elegida en 1935 cuartel general del PC chino.


Las costumbres de vivir en cavernas, arquitectura trogloditapara la familias de campesinos no impide que ademas de tener los diferentes ambientes cuente con deposito para granos y establos para los animales. Estas construcciones permiten soportar el calor y el frío con bastante comodidad e incluso se ven favorecidas por las escasas precipitaciones en la región. La única desventaja que tienen es la gran humedad interior.


Casa dentro de montañas


Cuentan que esta singulares construcciones quedaron alguna vez registradas en fotografías de satélites y preocuparon a países enemigos de China al creer que podría tratarse de silos con misiles.Pero luego de que el exsecretario de Estados norteamericano Henry Kissinger viajón a Beijing en la decada del 60, La Cia comprobó que se trataba efectivamente de viviendas.

cuevas subterraneas

Qué es el Estrés Térmico en la Arquitectura

Bioclimatica

Arquitectura Bioclimatica Que es el estrés térmico?

 En un ambiente determinado una persona podrá ganar o perder calor por los mecanismos ya mencionados en INTERCAMBIO TÉRMICO Del Cuerpo Humano .El confort térmico es en pocas palabras es el equilibrio termofísico. Si nuestro cuerpo no esta en ese equilibrio termofísico se produce el famosos estrés térmico. Sino disipamos el calor corporal lo suficiente la temperatura del cuerpo comenzara a elevarse o si nos estamos enfriando más de lo necesario deberemos corregir esta situación de inmediato.


Los mecanismos fisiológicos que defienden al organismo del estrés térmico:


Para los que no saben: El gran regulador térmico de nuestro organismo es el flujo sanguíneo.
Cuando sentimos frío el organismos reduce inmediatamente la velocidad de circulación sanguínea, contrayéndose las venas y las arterias más superficiales. La impresión es de lividez o palidez que indica que la persona está sometida al estrés de frío. Y si es el estrés es mas intenso, el color de la piel se torna azulado y el ritmo cardíaco disminuye.
Y al contrario, si es excesivo el calor produce mayor flujo sanguíneo y aumenta la actividad cardio-vascular, la sensación que produce es de no querer hacer nada, de sopor o aturdimiento.

Para que el proceso de disipación del calor excedente en el proceso metabólico pueda disiparse sin inconvenientes y la persona sienta una sensación de bienestar termofísica, las temperaturas tanto del aire como de los elementos próximos que lo rodean deberán estar entre 20/22ºC y 34ºC.


Considerada zona de confort


Si el organismo no puede disipar ese calor o esta recibiendo calor en forma excesiva y su temperatura interna supera los 41ºC, el riesgo de vida por shok térmico es muy alto.

En pocas palabras : Si algunas de las temperaturas están por debajo del valor mínimo sentiremos frío o si alguna de las superficies tiene una temperatura mayor de los 34ºC, tendremos la sensación de calor, aunque nos encontremos en un ambiente refrigerado.

El papel del arquitecto a la hora de diseñar tiene que tener muy en cuenta la zona de confort a diseñar en cada recinto, llámese cuarto, salón, cocina etc ;  generando un análisis de balances térmicos instantáneos. 



Una leve corriente de aire nos aumentara la sensación de frío en invierno pero en verano nos dará una sensación de frescor; estos fenómenos de transferencia convectiva tiene tanta importancia en las temperaturas y de los medios que se transfieren. Es por eso que hay edificios que en lugar de cumplir con las condiciones básicas de proteger a sus ocupantes de los rigores climáticos no lo hacen en la forma debida y que hay ocasiones en que amplifican las condiciones de intemperie dentro de los recintos a un nivel muy alto de estrés termófísico. 

EXIJA A SU ARQUITECTO O A LA PERSONA QUE ESTE DISEÑANDO SU CASA EN ESTE ASPECTO!!!

Arquitectura Comestible tiene una analogía entre una casa y un zapato. Si usted va una tienda y compra un zapato muy caro, de marca, etc. Llega a su casa, se lo calza, siente que le queda pequeño o le talla al caminar , lo tira a un lado y nunca lo vuelve a mirar. Y dice ¡HE PERDIDO DINERO!  Bueno, eso mismo pasa a la hora de construir una casa, invierte mucho dinero, energía, etc.  y queda inconforme.

Intercambio Térmico en Arquitectura

Intercambio Térmico en los Seres Vivos

Arquitectura Bioclimatica

Los intercambios térmicos entre el ser humano y el ambiente que lo rodea: En una sociedad que tiene asimiladas las pautas de vida de la sociedad industrial y cuyos niveles de vida son mayoritariamente aceptables considerando los estándares de alimentación, estado de salud, educación y vivienda, se puede verificar que la alimentación diaria de la mayoría de sus integrantes adultos significa la ingestión de 2500 a 3000 calorías.

Tasa de Desprendimiento Calorífico del Cuerpo Humano


-Dormir mínimo = 70 vatios
-Sentado, movimiento moderado = 130-160 vatios
-Sentado, con brazos y piernas en movimiento = 190-230 vatios
-De pie, paseo = 220-290 vatios
-Andando, levantamiento o empujes moderados =290-410 vatios
-Levantamiento y excavaciones pesadas pero intermitentes = 440-580 vatios
-Trabajo duro, sostenido = 580-700 vatios
-Trabajo pesado, máximo 30 minutos de duración = 1100 vatios.

El cuerpo humano disipa este calor excedente trasfiriendolo al entorno que lo rodea, sea dentro de un recinto ( generación por parte de los arquitectos confort térmico) o a un entorno al aire libre.




Los mecanismos de transmisión de calor en el cuerpo humano 


Transferencia por Convección: transfiriendo el calor del cuerpo hacia el aire en movimiento que lo rodea.
Transferencia por Conducción: transfiriendo el calor hacia todo aquello que esté en contacto directo con el cuerpo.
Transferencia por radiación: transfiriendo calor bajo la forma de energía radiante hacia otros objetos
Transferencia por evapotranspiración: transfiriendo calor latente por cambio de fase por evaporación del sudor o por la respiración hacia el aire que rodea el cuerpo.

Para NUNCA OLVIDAR A LA HORA DE PROYECTAR Y ESCOGER LOS MATERIALES: 
( en otros post lo especificamos)


Todo proceso de transferencia de calor se dirige del cuerpo de mayor temperatura hacia el cuerpo de menor temperatura.


La piel está a una temperatura variable según la zona del cuerpo pero por promedio podemos considerar un valor de 34ºC. En el interior del cuerpo el promedio es de 37ºC. esto significa que para el cuerpo humano pueda disipar su exceso de calor, los elementos que lo rodea deben estar a una temperatura menor de 34ºC.
Si algunos elementos externos que rodea o próximos al cuerpo presentan una temperatura mayor de 34ºC la transferencia del calor será desde el elemento al cuerpo.

En resumen: las posibilidades de disipar el calor excedente, dependerá de las temperaturas del aire o superficiales de todos los elementos que rodean a la persona y del balance instantáneo que exista entre pérdidas y ganancias.




Vientos en el Diseño Arquitectónico

Viento

BARRERAS CONTRA VIENTOS
Arquitectura Bioclimatica

Las barreras de viento parcialmente permeables, como hileras de árboles, crean zonas protegidas de aproximadamente 15 veces la altura de aquellos y zonas semiprotegidas en sus proximidades. Las barreras opacas, tales como muros, etc. desvían el aire con mayor ímpetu hacia arriba pero, a diferencia de las barreras permeables, el flujo de aire desciende a nivel del terreno a distancias menores y con mayor fuerza, creando zonas más reducidas de protección.
En los extremos de las barreras y en los espacios donde estas se interrumpen, se forman zonas de aceleración de viento.



La protección que proyecta una barrera depende de su altura y de su permeabilidad. Las barreras muy densas u opacas logran una excelente protección en las zonas inmediatamente adyacentes a las mismas, pero son menos eficaces a distancias mayores, ya que los desvíos de aire ascendente que producen llegan nuevamente al suelo en forma descendente con mayor brusquedad.

El comportamiento opuesto está dado por barreras más permeables que actúan como resistencia reductora de la velocidad del aire en forma tamizada y menos violenta.

A distancia superior a 20 veces la altura de la barrera, la velocidad del viento alcanza valores similares a las zonas desprotegidas. Así mismo, las barreras disminuyen la velocidad del viento en las zonas inmediatamente a sotavento. (vientos dominantes)

La distancia entre barreras es consecuentemente, otro factor esencial para que la protección de vientos resulta eficaz. Con distancias entre barreras de hasta 20 veces su altura, la disminución de la velocidad a barlovento ( sentido contrario al sotavento) de una barreras se combina con la disminución a sotavento de las barreras siguiente, produciendo protección continúa.

El uso de barreras sucesivas produce un cambio en la rugosidad del suelo y en el perfil de velocidad del viento, logrando una disminución general de la velocidad a nivel peatonal.


La sombra de Viento
Constituye una ventaja en climas fríos, por la protección que proporciona. Los edificios ubicados en la zona de menor velocidad tendrán menores pérdidas de energía y los espacios serán aptos para actividades tales como juegos para niños, expasiones privadas y circulaciones peatonales.

Ref: Módulo I, Arq.Solar II